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Abstract Species invasions are of global significance, but
predicting their impacts can be difficult. Introduced ecosys-
tem engineers, however, provide an opportunity to test the
underlying mechanisms that may be common to all inva-
sive engineers and link relationships between changes in
diversity and ecosystem function, thereby providing
explanatory power for observed ecological patterns. Here
we test specific predictions for an invasive ecosystem engi-
neer by quantifying the impacts of habitat and resource
modifications caused by North American beavers (Castor
canadensis) on aquatic macroinvertebrate community
structure and stream ecosystem function in the Cape Horn
Biosphere Reserve, Chile. We compared responses to bea-
vers in three habitat types: (1) forested (unimpacted) stream
reaches, (2) beaver ponds, and (3) sites immediately down-
stream of beaver dams in four streams. We found that bea-
ver engineering in ponds created taxonomically simplified,
but more productive, benthic macroinvertebrate assem-
blages. Specifically, macroinvertebrate richness, diversity
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and number of functional feeding groups were reduced by
half, while abundance, biomass and secondary production
increased three- to fivefold in beaver ponds compared to
forested sites. Reaches downstream of beaver ponds were
very similar to natural forested sections. Beaver invasion
effects on both community and ecosystem parameters
occurred predominantly via increased retention of fine par-
ticulate organic matter, which was associated with reduced
macroinvertebrate richness and diversity (via homogeniza-
tion of benthic microhabitat) and increased macroinverte-
brate biomass and production (via greater food
availability). Beaver modifications to macroinvertebrate
community structure were largely confined to ponds, but
increased benthic production in beaver-modified habitats
adds to energy retention and flow for the entire stream eco-
system. Furthermore, the effects of beavers on taxa richness
(negative) and measures of macroinvertebrate biomass
(positive) were inversely related. Thus, while a generally
positive relationship between diversity and ecosystem func-
tion has been found in a variety of systems, this work
shows how they can be decoupled by responding to altera-
tive mechanisms.

Keywords Ecosystem engineer - Exotic - Invasion -
Secondary production - Subantarctic

Introduction

Invasive exotic species and their associated impacts consti-
tute a principal part of global environmental change (Vito-
usek et al. 1996). Species invasions can alter communities
and ecosystems via a number of pathways such as changing
resource availability, energy flow dynamics and distur-
bance regime (Vitousek 1990). Moreover, it has been
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recognized that an additional process by which invasive
species may impact an entire ecosystem is via ecosystem
engineering, i.e., creating, destroying or modifying habitat
(Jones et al. 1994; Crooks 2002). However, while invasion
is a widely documented phenomenon, the ability to predict
its consequences is often difficult (Sax et al. 2005). In this
context, the framework provided by the ecosystem engineer
concept (Jones et al. 1994) may also allow the development
of greater predictive power regarding the impacts of inva-
sive species by identifying key mechanisms that are gener-
ally applicable and explain observed ecological patterns.

The Cape Horn Biosphere Reserve (CHBR) in southern
Chile is an area replete with exotic species (Anderson et al.
2006a), even though it is otherwise considered one of the
world’s most pristine wilderness areas, due to its low
human population density and its largely intact native vege-
tation cover (Mittermeier et al. 2002; Rozzi et al. 2006).
The introduced fauna include approximately half of terres-
trial mammals (12 of 22 species) and freshwater fish (two
of five species) (Anderson et al. 2006a; Moorman 2007), as
well as two non-native birds and an introduced earthworm
(Anderson and Hendrix 2002; Anderson etal. 2006a).
Among these exotics, the North American beaver (Castor
canadensis Kuhl), introduced in 1946, stands out for being
an ecosystem engineer that has invaded most of the archi-
pelago at relatively high densities (Lizarralde 1993; Skewes
et al. 2006; Anderson et al. 2006a; Wallem et al. 2007).

An invasive ecosystem engineer (IEE), such as the bea-
ver, can be a particularly strong modifier of the environ-
ment. The effects of IEEs on taxa richness are predicted to
be a function of their influence on physical resources, such
that richness is expected to increase or decrease as habitat
heterogeneity is enhanced or reduced, respectively (Crooks
2002). In this respect, ecosystem engineers may be crucial
for maintaining biodiversity in some landscapes (Badano
and Cavieres 2006). Alternatively, richness may be expected
to be a function of an engineer’s effect on the productivity of
a system, whereby richness increases to a peak after which
greater production results in a decrease in the number of
taxa (Wright and Jones 2004). Previous research in the bea-
ver’s native range indicates that their engineering enhances
landscape diversity of terrestrial and aquatic assemblages
via the creation of a patchy mosaic of habitats (Naiman et al.
1988; Pringle et al. 1988; Wright et al. 2002). The role of an
ecosystem engineer in a particular place, however, is a ques-
tion of scale and context, depending upon the surrounding
natural landscape and regional species pool in which the
engineering activity is embedded (Crooks 2002; Rosell et al.
2005). In an area such as southern South America where
wetlands occur naturally, we would therefore expect beaver-
created habitats to potentially have less influence on land-
scape heterogeneity, compared to their effects where wet-
lands are absent or less abundant.
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In addition to altering community structure, invasive
species also modify food web dynamics by affecting
resource availability (e.g., Vitousek et al. 1987), or they
may dominate energy flow due to their sheer numbers and
biomass (e.g., Strayer et al. 1999). By influencing resource
quality, availability and productivity, ecosystem engineers
too can have trophic effects that are unrelated to their actual
membership in the food web (Jones et al. 1994; Wright and
Jones 2004). The engineering activities of beavers in their
native range make stream ecosystems more retentive of
organic material (Naiman et al. 1986) and nitrogen (Nai-
man and Melillo 1984), which also leads to increased bio-
mass of stream macroinvertebrates (McDowell and Naiman
1986). Similar effects should be expected of beavers as
invasive exotics, as they increase retention in streams and
thus enhance food resources to consumers.

To determine the role of beavers as invasive exotic eco-
system engineers, we assessed their modification of stream
habitat (physical, chemical and geomorphological) and
basal resources (quantity and quality). We then quantified
how the beaver’s ecosystem engineering altered benthic
macroinvertebrate community structure (richness, diver-
sity, similarity, density and assemblage) and ecosystem
function (macroinvertebrate biomass and secondary pro-
duction). We tested our hypotheses regarding beaver
impacts by comparing these parameters among three habi-
tat types: (1) natural, forested stream sections that were not
modified by beavers; (2) beaver ponds; and (3) reaches
downstream of ponds. The 60-year history of North Ameri-
can beaver presence in southern South America gave us an
excellent opportunity to test predictions concerning the
effects of IEEs on recipient ecosystems. Our data also
allowed us to make comparisons between the structure and
function of stream ecosystems worldwide with those from
the CHBR for which very little previous information is
known (Rozzi et al. 2006).

Materials and methods
Site description

This study was conducted on Navarino Island (55°S) in the
CHBR, which hosts the world’s southernmost forested eco-
system (Appendix 1). Short, cool summers (mean 9°C) and
long, cold winters (mean 2°C) characterize the study site,
which receives about 500-650 mm of precipitation annu-
ally (Tuhkanen et al. 1989). Four streams (Robalo, Estrella,
Mejillones and Faraones) were studied on the island’s north
coast at elevations below 100 m in mixed forest-bog water-
sheds. Catchments are relatively short (<15 km). Study
reaches were established on the main channels with widths
ranging from approximately 4.5 to 8 m (mean 6.6 £ 0.9 m),
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and beaver damming increased channel width (mean
29.6 £ 10.2 m).

Each stream had three sampling locations that represented:
(1) a natural, forested reach not impacted by beavers (for-
ested); (2) an active beaver pond (pond); and (3) a site imme-
diately downstream of the beaver dam, whose riparian zone
was foraged by beavers, but with a flowing stream current
(downstream). The beaver-impacted sites were previously
forested before beaver colonization, as evidenced by the geo-
morphology of the site and the presence of standing dead tree
trunks, and forested sites were located approximately 1 km
from beaver ponds (downstream in the case of Robalo and
Faraones and upstream for Estrella and Mejillones).

Most samples were collected monthly, bimonthly or during
three seasons [spring (October), summer (January) and fall
(May)] from January to December 2003. For several variables
[temperature, specific conductivity, dissolved oxygen (DO),
wood and seston biomass and carbon:nitrogen ratio for coarse
benthic organic matter (CBOM), very fine benthic organic
matter (VFBOM) and seston] data were lacking from Estrella
Stream and therefore reflect a smaller sample size.

Habitat characterization
Physical

Riparian forest canopy cover was estimated seasonally at 10-m
intervals along each study reach with a spherical densiometer.
Mean daily stream temperature was recorded with Hobo dat-
aloggers, taking measurements every 15 min in three streams
(Robalo, Mejillones and Faraones). Degree days were calcu-
lated as the sum of daily averages over 0°C for 1 year for only
the Robalo River, due to lost data at the other sites since they
could not be accessed in July (winter) due to deep snow.

Chemical

Stream water samples were collected bimonthly at each site
using a syringe-mounted membrane filter (Millipore 0.45-pm
pore size). Samples were frozen and transported to the
Analytical Chemistry Lab at the Institute of Ecology, Uni-
versity of Georgia (UGA), Athens, Georgia. Nitrate and
soluble reactive phosphorus (SRP) were measured using an
Alpkem RFA 300. Dissolved organic carbon (DOC) con-
centrations were measured with a Shimadzu TOC-5000A.
We used an YSI 85D meter to measure DO and specific
conductance (SC), and a Beckman 250 probe was used to
determine pH once at each site.

Substrate

Substrate characteristics were determined at each site using
Wolman pebble counts to quantify particle size distribution

(Harrelson et al. 1994). These values were then used to cal-
culate substrate diversity by applying a Shannon-Weiner
diversity index to the abundance of particular size classes
of substrate found during the pebble counts.

Basal resources

Quantity

The standing crops of basal resources were measured sea-
sonally. CBOM, fine benthic organic matter (FBOM) and
VFBOM were collected using a core sampler (0.07 m?). The
number of sub-samples was determined by the size of the
stream with three stream-width transects and one sample per
meter in forested and downstream sites (usually nine to 12)
and ten replicates in ponds. Contents of the sampler were
removed to a depth of 10 cm and passed through two sieves:
1 mm and 250 pm. The total >1-mm portion was collected
and constituted the CBOM; FBOM was the fraction of the
sample collected by the 250-pm sieve. VFBOM was col-
lected in a bucket under the sieve, a sub-sample of which
was passed through pre-ashed filter (0.7 pm, Whatman GF/
F). Biofilm was collected seasonally using a stiff brush and
core sampler on three to five rocks (sub-samples) in down-
stream and forested sites; rocky substrates were not avail-
able in ponds. The slurry was removed and pipetted through
a pre-ashed filter. Seston (suspended organic material
>0.7 um) was collected in spring 2005 on a pre-ashed filter.
Estimates of wood biomass were also made at each site in
spring 2005 using the method of Wallace and Benke (1984)
to determine wood volume, which was then converted to
biomass with specific weight values for Nothofagus spp.
(CONAF 1988). All samples were frozen until they could be
transported to the laboratory at the University of Magallanes
(UMAG), Punta Arenas, Chile, where they were dried at
60°C, weighed, ashed at 500°C and reweighed to determine
g ash-free dry mass (AFDM) m 2.

Quality

Samples of all resources were also collected at each collec-
tion period for carbon:nitrogen ratio analysis. All were dried
at UMAG and transported to UGA, where they were homog-
enized with a CertiPred 8000-D ball mill, weighed on a Sar-
torius M2P micro-balance and analyzed for carbon:nitrogen
ratio with a Costech elemental analyzer. We determined total
nitrogen content of resources by multiplying resource quan-
tity by its carbon:nitrogen ratio for each basal resource type.

Community analysis

Beaver impacts on macroinvertebrate communities are typ-
ically driven by the trophic guilds, or functional feeding
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groups (FFG), of macroinvertebrates that can benefit from
changes in food resources, particularly collector—gatherers
and predators (McDowell and Naiman 1986). We sampled
benthic macroinvertebrates seasonally with three sub-sam-
ples taken at each study reach with a core sampler. The
contents were passed through a 250-pm sieve, and collec-
tions were transported in jars of ethanol to the laboratory,
where invertebrates were separated from detritus under a
dissecting microscope (63x) and stored in 70% ethanol.
Taxa were identified to the lowest possible level, and FFGs,
i.e., collector—gatherer (gatherer), collector—filterer (filterer),
scraper, shredder and predator, were determined using Mer-
ritt and Cummins (1996), Miserendino and Pizzollo (2000),
Fernandez and Dominguez (2001) and by other experts for
particular taxa (see Acknowledgements). Mean richness,
Shannon—-Weiner diversity, Bray—Curtis community simi-
larity (using presence—absence and biomass) and abundance
were calculated using EstimateS (Colwell 1997).

Ecosystem function

During identification of macroinvertebrates, the lengths of
specimens were measured to the nearest millimeter under a
dissecting scope, and biomass was determined for each
taxon using length—mass regressions developed by Benke
etal. (1999) and Miserendino (2001). Mean annual bio-
mass, expressed as mg AFDM m ™2, was calculated for each
taxon and functional feeding group in each habitat type in
the four streams on a seasonal basis.

Benthic macroinvertebrate secondary production was cal-
culated for the Robalo and Mejillones streams, which were
chosen because they reflected two distinct stream types: clear
water and tannin-enriched water, respectively. Samples for
secondary production were taken as above, although in this
case four, rather than three, sub-samples were collected at
each stream/habitat type on a monthly basis from January to
December 2003; no collections were made in August due to
deep snow. Macroinvertebrates were collected, identified,
and measured for biomass as described above. We then used
the size-frequency method (Hamilton 1969) with the cohort
production interval (CPI) correction factor (Benke 1979) to
calculate secondary production, expressed as mg AFDM
m~2 year~!. Size distributions, graphed using each sample
date, showed that cohorts were asynchronous, and we used
CPIs derived for similar taxa from analogous streams in New
Zealand (Huryn 1996, 1998). For a few taxa, we used an esti-
mated CPI based on reported values or general life history
information [Amphipoda (Pickard and Benke 1996); Bival-
via (Winterbourn 1973); Copepoda, Gastropoda and Ostra-
coda (Thorp and Covich 1991); Simuliidae (M. Mercado,
Laboratorio Benthos, Chile, personal communication)].
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Analyses

Macroinvertebrate data (abundance, richness, diversity
and biomass) and basal resource standing crops were log-
transformed to achieve normality. They and other physi-
cal, chemical and geomorphological variables were con-
verted to mean annual values based on seasonal samples
and compared between habitat types with a randomized
complete block design (stream =block; habitat = main
factor). Significant main effects were followed by Tukey
HSD tests of significance. Since biofilm was only mea-
sured in forested and downstream sites, comparisons were
made with a #-test. pH was expressed as the median value
for each habitat. Secondary production of macroinverte-
brates was compared qualitatively among habitat types and
with other published values for the two streams for which
it was determined.

To examine predicted physical versus resource path-
ways by which beavers altered community and ecosys-
tem-level properties, we conducted regression analyses
to test our hypotheses regarding the relative importance
of habitat diversity and resource quantity and quality on
macroinvertebrate community structure and function.
Dependent variables were mean annual values per
stream per habitat for: (1) benthic macroinvertebrate
richness (no. of taxa m~2), as our indicator of commu-
nity-level change; and (2) macroinvertebrate biomass
(mg AFDM m~2), as the indicator of ecosystem-level
change. We used biomass as a surrogate for secondary
production since it was available from all sites, and the
two variables were significantly related (r*=0.85,
P =0.01, n=6). We tested whether: (1) substrate heter-
ogeneity (H'), or (2) macroinvertebrate biomass (mg
AFDM m~2) were useful in explaining variation in taxa
richness among habitat types, based on a priori predic-
tions that richness would be related to habitat diversity
(Crooks 2002) or potentially to overall productivity
(Wright and Jones 2004). To test which factors were
important drivers of ecosystem function, we examined
relationships between macroinvertebrate biomass (as a
dependent variable) and resource quantity (g AFDM
m~2) and nutrient content [g nitrogen m~>] of basal
resources (as independent variables). These tests were
based on hypotheses that macroinvertebrate biomass
should be related to carbon and/or nutrient standing crop
(Wallace et al. 1997; Cross et al. 2006). We also ana-
lyzed these relationships differentiating between size
fractions of organic matter to determine which compo-
nent was most important in driving impacts on benthic
production. All statistical analyses were performed with
JMP 5.0.1 (SAS Institute, Cary, N.C.).
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Results
Habitat characterization

Forested study reaches were heavily shaded, and beavers
significantly reduced canopy cover at both pond and
downstream sites (Table 1). Temperature, however, did
not differ significantly among habitat types, but daily tem-
perate range and degree days did show an increasing trend
from forested to downstream to beaver pond sites
(Table 1).

Water chemistry did not differ among habitat types
(Table 1). Nitrate concentrations were uniformly low and
unaffected by beaver modifications; SRP was undetectable;
DOC was similar between habitats in the same stream; and
median pH was circumneutral in all habitat types (Table 1).
SC values were also low, while DO was supersaturated
(Table 1).

Substrate differed in beaver ponds compared to the
other two habitats (Table 1). Pond sites contained almost
exclusively organic material, lacking natural rocky
substrate, while the downstream site retained the same
particle size profile as forested reaches. Consequently,
pond sites had a significantly lower substrate diversity
index than both forested and downstream reaches
(Table 1).

Table 1 Shown are mean annual values (SE) for physical, chemical
and geological habitat variables at forested reaches, beaver ponds and
downstream sites. Values within each row with different letters were

Basal resources

In ponds, beavers increased the standing crop of wood six-
fold, CBOM 43-fold, FBOM 44-fold and VFBOM 22-fold
compared to forested reaches, but organic matter standing
crops at sites immediately downstream of beaver ponds
were similar to forested reaches (Table 2). The quantity of
seston and biofilm did not vary among habitat types
(Table 2).

The quality of benthic organic matter did not differ
among habitat types. However, the greatest differences in
carbon:nitrogen ratio were for FBOM and VFBOM, which
showed a trend toward lower quality (i.e., higher car-
bon:nitrogen ratio) in ponds, compared to downstream and
forested sites (Table 2).

Community parameters

We identified a total of 35 benthic macroinvertebrate taxa
representing all functional feeding groups (Appendix 2).
Forested sites had the greatest total richness (33) with
ponds being the lowest (28) and downstream reaches
intermediate between the other two (31). The assemblage
included a total of 15 orders from five classes (Annelida,
Arthropoda, Crustacea, Insecta and Mollusca). Most taxa
were insects (74%), and Diptera was the most diverse

significantly different with a Tukey HSD post-hoc test (P < 0.05) for
significant main effects. SRP soluble reactive phosphorous, DOC dis-
solved organic carbon, SC specific conductivity, DO dissolved oxygen

Habitat characteristic Forested Beaver pond Downstream F* dar pP?
Canopy cover (%) 69.4 (5.1) A 21.5(5.7)B 30.2(7.8)B 21.6 2,6 0.002
Mean daily temperature (°C) 45(0.1) 4.8(0.4) 4.8(0.2) 0.93 24 0.47
Annual temp. range (°C) —0.6t0 16 —21020 —0.6t0 18 - - -
Annual degree days (>0°C) 1,781 1,853 1,830 - - -
Nitrate-nitrogen (p.p.m.) 0.05 (0.01) 0.04 (0.01) 0.05 (0.01) 0.0004 2,6 0.57
SRP (p.p.m.) Undetectable Undetectable Undetectable - - -
DOC (p.p.m.) 13.5(5.3) 122 (5.4) 13.1(5.5) 0.21 2,6 0.81
SC (uS cm™) 118.2 (25.9) 103.5 (15.8) 77.2 (14.9) 1.32 24 0.4
DO (mg 171 9.6 (0.6) 8.3(1.5) 10.8 (0.3) 3.48 24 0.13
pH 75 7.1 7.6 - - -
Substrate particle diversity (H') 0.81 (0.08) A 0.14 (0.14) B 0.85 (0.05) A 39.1 2,6 0.0004
Substrate particle type (%)

Organic 0.5(0.3) A 88.8(13) B 5333)A 50.22 2,6 0.0002
Sand 11.0(5.4) 8.0(9.2) 11.3 (6.6) 0.18 2,6 0.84
Gravel 37.0 (8.1) A 28(3.2)B 46.8 (6.0) A 40.32 2,6 0.0003
Cobble 453 (17.2) A 0.5 (0.6) B 22.0 (6.8)AB 7.61 2,6 0.02
Boulder 0.3(0.3) 0.0 (0.0) 0.8 (0.9) 1.00 2,6 0.42
Bedrock 6.0 (4.1) 0.0 (0.0) 14.0 (6.7) 2.24 2,6 0.19

* F-values and df are from main effects analyzed with a randomized complete block design for all variables except temperature range, annual

degree days >0°C and median pH
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Table 2 Mean annual basal resource standing crops [g ash-free dry
mass (AFDM) m~?] and mean annual basal resource quality
(carbon:nitrogen ratio) at forested reaches, beaver ponds and

downstream sites (£SE)*. CBOM Coarse benthic organic matter,
FBOM fine benthic organic matter, VFBOM very fine benthic organic
matter

Quantity Forested Beaver pond Downstream F df P

Mean annual basal resource standing crops (g AFDM m~2)

Wood 558.4 (37.7) A 3,561.7 (232.8) B 662.9 (245.2) A 23.8 24 0.006
CBOM 10.6 (3) 438.2 (134.4) 15.4(6.7) 5.35 2,6 0.05
FBOM 18.0(1.3) A 786.8 (63.4) B 66.0 (7.5) A 127.7 2,6 <0.0001
VFBOM 26.0 (6.1) A 574.0 (139) B 34.6 (6) A 309.2 2,6 <0.0001
Biofilm 5.6(2) - 7.4 (1.8) 2.3 3 0.1°
Seston 0.002 (0.0004) 0.003 (0.001) 0.003 (0.001) 0.2451 24 0.79
Mean annual basal resource quality (carbon:nitrogen ratio)

CBOM 40.8 (3.7) 412 (4.4) 39.8 (6.4) 0.02 2,6 0.98
FBOM 21.7(1.4) 26.7 (1.7) 20.5 (0.7) 522 2,6 0.05
VFBOM 14.5(1.2) 18.7 (1.5) 14.2 (0.9) 4.21 2,6 0.06
Biofilm 9.5(0.4) - 9.8 (0.2) 0.88 5 0.42°
Seston 12.8 (1.6) 9.4 (0.8) 11.7 (0.4) 2.15 24 0.23

% ANOVA results are as in Table 1

® Indicates t-test for data only collected in two habitat types

order (13 morpho-species). Ten species and 14 genera
could be determined. The 11 remaining taxa were identi-
fied to family or order. Beaver-impacted areas had two
taxa that were not found in natural forested sites: the
Hemiptera Corixa sp. and the bivalve Pisidium magellan-
icum Dall.

Beaver ponds had significantly lower richness and diver-
sity, compared to forested and downstream sites (Table 3).
Community similarity indices showed a significant differ-
ence between ponds and forested sites, while the down-
stream reach was intermediate between the two (Down—
Down = 0.46 A, Forest-Down = 0.43 A, Pond—Pond = 0.43
A, Forest—Forest =0.42 A, Down-Pond = 0.35 AB, For-
est-Pond = 0.22 B; Fs45=6.26, P <0.001; values sepa-
rated by different letters were significantly different with a
post-hoc Tukey HSD test, P < 0.05). Macroinvertebrate
abundance was 2-5 times higher in downstream and pond
sites than forested reaches, but this trend was not statisti-
cally significant (Table 3).

Biomass and secondary production

Total benthic macroinvertebrate biomass was signifi-
cantly higher in beaver ponds (5 times higher) compared
to forested sites, and downstream sections were again
intermediate between the two, but not significantly differ-
ent than forested reaches (approximately twice as high)
(Table 3). Gatherers were the dominant functional feeding
group by biomass in all three-habitat types (Table 4). In
ponds, biomass of predators and gatherers was 8—20 times
higher, and the biomass of scrapers, shredders and filter-
ers was significantly lower, 5-10 times, in ponds com-
pared to the other two habitats (Table4). While
downstream sites exhibited an increase in total biomass
(Table 3), as well as the biomass of every FFG in the
order of 1.5times, compared to forested sites, these
increases were not significant (Table 4). The relative con-
tribution of scrapers, shredders and filterers was also sig-
nificantly decreased in ponds, while the proportion of

Table 3 Benthic macroinvertebrate community variables for forested, beaver pond and downstream sites®. Annual means (+SE) are based on sea-
sonal samples for each habitat (forested reaches, beaver ponds and downstream sites) from four streams. H' Shannon—Weiner diversity index

Category Forested Beaver pond Downstream F df P
Richness (no. taxa m~2) 153(1.7)A 10.0 (0.9 B 158 (1.2) A 5.7 2,6 0.04
Diversity (H') 2.0(0.1) A 14 0.1)C 1.9(0.1)B 1540.4 2,6 <.0001
Abundance (individuals m~2) 2,611.5 (504.9) 14,350 (10,381) 5,086.2 (1,029.8) 09 2,6 0.42
Biomass (mg AFDM m~2) 2579 (89.4) A 864.1 (179.8) B 443.3 (68.2) AB 7.2 2,6 0.03

2 ANOVA results are as in Table 1
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Table 4 Mean annual biomass (mg AFDM m~2) and relative annual biomass (%) for each functional feeding group (+SE) based on seasonal
samples in three habitat types (forested reaches, beaver ponds and downstream sites) from four streams®

Forested Beaver pond Downstream F df P
Mean annual biomass
Gatherer 149.8 (71.9) 708.0 (180.0) 258.0 (70.2) 3.81 2,6 0.09
Scraper 357 (12.1) A 3.03.0)B 458 (23) A 18.1 2,6 0.003
Shredder 15.0(4.0) A 2.8(1.7)B 37.5(20.8) A 5.62 2,6 0.04
Filterer 52.2 (16.8) 5.34.1) 84.8 (40.8) 2.99 2,6 0.13
Predator 52(13)A 1443 (43.4)B 172 (7.5 A 11.77 2,6 0.008
Relative annual biomass
Gatherer 53.9(11.3) 75.8 (6.0) 56.7 (5.2) 1.66 2,6 0.27
Scraper 17.8(5.2) A 0.4(0.4)B 122 (54) A 7.5 2,6 0.02
Shredder 8.2(0.01) A 0.27 (0.00) B 7329 A 7.05 2,6 0.03
Filterer 22.4(7.9) 0.7 (0.5) 20.2 (9.7) 2 2,6 0.22
Predator 22(0.1)A 22.8(7.0)0B 37(1.8) A 8.8 2,6 0.02

2 ANOVA results are as in Table 1

predators significantly increased, compared to forested
and downstream sites (Table 4).

In both Robalo and Mejillones, secondary production was
highest in ponds and lowest in forested sites (Fig. 1, Appendi-
ces 3a, b). The production values for forested sites were simi-
lar in both streams. Secondary production at the Mejillones
beaver pond was higher than at Robalo, and for the Robalo
downstream site was higher than at Mejillones (Fig. 1).

In all habitat types, the gatherer Hyalella simplex Schel-
lenberg (Amphipoda: Hyalellidae) and non-Tanypodinae
chironomids (Diptera: Chironomidae) were the dominant
taxa with regards to secondary production; together they
represented >50% of production at all sites. The number of
taxa that contributed >1% to total secondary production
was reduced in ponds relative to the other habitats. Overall,

the assemblage found in beaver ponds was a subset of the
total diversity found in forested and downstream sites,
rather than a unique assemblage (Appendix 2).

In downstream and forested sites, we found from seven
to nine morpho-species at each site were important (i.e.,
>1%) contributors to production (Fig. 1, Appendices 3a, b).
In contrast, beaver ponds had only four taxa (H. simplex,
Oligochaeta, Tanypodinae and non-Tanypodinae chirono-
mids) that contributed similarly.

Beaver-mediated alterations to resources and community
and ecosystem properties

There was a positive relationship between macroinverte-
brate taxa richness and substrate diversity (Fig. 2a). Greater

Fig. 1 Annual secondary pro-

duction [mg ash-free dry mass
(AFDM) m 2 year‘l] of stream
benthic macroinvertebrates for
the period January—December
2003 and proportional represen-
tation of functional feeding
groups for three habitats (for-
ested, beaver pond and down-
stream) in the (a) Robalo and (b)
Mejillones watersheds in the
Cape Horn Biosphere Reserve,
Chile. Richness is the number of
taxa that constituted >1% of pro-
duction. Size of pie chart is pro-
portional to its total secondary
production, and each is divided
into relative contribution from
functional feeding groups: gath-
erer ([ ), filterer ( &), shredder
(@), scraper (@) and predator

(m

(a) Robalo River

Forested
2° Production: 2,262
Richness: 9

Beaver Pond
2° Production: 7,530
Richness: 4

Downstream
2° Production: 5,627
Richness: 7

(b) Mejillones River
Forested
2° Production: 2,456
Richness: 8

®

Beaver Pond
2° Production: 12,489
Richness: 4

Downstream
2° Production: 2,704
Richness: 9
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Fig. 2 Mean benthic macroinvertebrate taxa richness was regressed
with (a) benthic substrate diversity measured with a Shannon—Weiner
diversity index (H') and (b) mean benthic macroinvertebrate biomass
(mg AFDM m™2). Habitat types are indicated as forested (filled trian-
gle), beaver pond (filled diamond), and downstream (filled square).
a2 =0.55, P =0.01; b not statistically significant

macroinvertebrate richness was associated with forested
and downstream sites, and the lowest richness was found
with lower substrate diversity in beaver ponds. We found
no explanatory power comparing macroinvertebrate rich-
ness to macroinvertebrate biomass (R2 =0.1, P=0.3)
(Fig. 2b).

Macroinvertebrate biomass, however, was positively
related to resource quantity (Fig. 3a, e), but showed no rela-
tionship with the quality of organic matter, based on nitrogen
content (Fig. 3b, d, f). The effect of benthic organic matter on
macroinvertebrate biomass was strongest with fine, rather
than coarse, fractions of organic matter (Fig. 3c, e).

Discussion

The effects of invasive beavers on stream benthic
community structure

The engineering activities of invasive, exotic beavers in the
CHBR reduced both macroinvertebrate richness and diver-
sity in beaver ponds relative to unimpacted sections and
reaches downstream of ponds. General ecological theory
predicts that taxa richness increases with habitat heteroge-
neity, an assertion which has been supported by studies for
multiple taxa, scales and ecosystems (e.g., Kerr and Packer
1997; Downes et al. 1998; Guegan et al. 1998; Kerr et al.
2001). Crooks (2002) extended this concept to ecosystem
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Fig. 3 Mean annual macroinvertebrate biomass (mg AFDM m~2) was
regressed against categories of carbon (g AFDM m~2) and nitrogen
(gN m™2) resources in total benthic organic matter (BOM; a, b), coarse
BOM (CBOM; ¢, d) and total fine and very fine BOM (FBOM
+ VFBOM; e, f). Biomass only responded significantly to carbon re-
source availability (total BOM 7* = 0.57, P = 0.01), which was mostly
driven by the fine particle fraction (FBOM + VFBOM 2 =0.72,
P =0.004)

engineers, positing that the influence of ecosystem engi-
neering on species richness should be related to whether or
not the engineer increases or decreases habitat diversity,
which in turn is dependent on the surrounding landscape
context. Evidence from our study supports this assertion, as
beaver engineering activities in pond habitats reduced taxa
richness as a function of reduced benthic substrate hetero-
geneity (Fig. 2, conceptualized in Fig. 4). By burying the
stream-bed under a layer of organic matter, beavers reduced
the complexity of benthic habitats in ponds, in contrast to
unimpacted or downstream sites, where there were a variety
of substrates and microhabitats present.

Landscape impacts of beavers on benthic habitat and
taxa richness in the Cape Horn Archipelago may not be as
strong, however. In contrast to local effects on substrate
microhabitat, beaver modifications moderately enhanced
heterogeneity along the forested portion of these streams by
introducing a new lentic habitat type (beaver ponds).
Aggregating all three habitat patches, beavers increased
benthic macroinvertebrate richness in otherwise forested
stream reaches, given the presence of two additional spe-
cies, water boatmen (Corixa sp.) and bivalves (P. magel-
lanicum), found in beaver-impacted habitat and not in
natural, forested sections (Appendix 2). However, if we
consider the predominant taxa (>1% of biomass) in each
habitat, the beaver ponds’ macroinvertebrate community
represented merely a subset of those inhabiting unimpacted



Oecologia (2007) 154:141-153

149

Habitat Pathway
Taxa Richness

)/Forested

Habitat heterogeneity

\ Increased standing
crop of benthic

organic matter

Aquatic Habitat f
Riparian Zone

Beaver engineering activities transport and retain
terrestrial organic matter in stream ecosystems

Trophic Pathway
Consumer Productivity

Beaver
Pond

Forested
Resource availability

Beaver
Pond

Invertebrate richness
Invertebrate biomass

Fig. 4 Underlying mechanisms explaining observed beaver-induced
changes to benthic macroinvertebrate richness and production, using
proposed pathways for the general effect of invasive ecosystem engi-
neers on community and ecosystem properties (Crooks 2002). Direc-
tion of arrows indicates trajectories of change from forested to beaver
pond habitats. Conditions at sites downstream of beaver ponds were
similar to those observed in forested reaches and thus are not shown

sections, while the community at downstream sites was
similar to natural conditions. The Cape Horn Archipelago
contains a mosaic of forests interspersed among natural len-
tic habitats such as glacial lakes and peat bogs (Rozzi et al.
2006). In this case, beaver ponds may not be distinct from
other lentic habitats found in this forest-bog mosaic, and as
would be expected the enhancement of taxa richness we
observed along forested reaches was slight. Thus, we
believe that beaver modifications to benthic community
structure are largely restricted to pond habitats, coinciding
with broader scale predictions of weaker ecosystem engi-
neer effects in landscapes in which their impacts are not
unique (Wright et al. 2002; Rosell et al. 2005).

In contrast to taxa diversity, however, trophic diversity
was enhanced by beaver habitat alterations. In ponds, we
observed an increase in both the diversity and biomass of
macroinvertebrate predators, while they were virtually
absent in forested and downstream sites, indicating that
beaver modifications enhanced trophic diversity by adding
to secondary consumers. Thus, effects of beavers were
propagated through at least three trophic levels: basal car-
bon, primary consumers and secondary consumers.

The effects of invasive beavers on stream ecosystem
function

Our secondary production estimates are the first such val-
ues reported for aquatic macroinvertebrates in the temper-
ate forest ecosystems of southern South America.
Secondary production at forested sites in our study was
lower than 97% of the 58 reported values summarized by
Benke (1993) for worldwide streams. However, they fit

expectations for other cold, nutrient-poor ecosystems
(Huryn and Wallace 2000), and a comparison of subantarc-
tic Chilean streams with other high latitude sites from the
Northern and Southern Hemispheres showed similar ben-
thic macroinvertebrate secondary production (Table 5). The
effect of beaver introduction resulted in elevating total sec-
ondary production values to the median range of estimates
for world sites, making these high latitude streams more
similar to temperate systems in terms of benthic consumer
production.

The contribution to macroinvertebrate production by
different functional groupings in our study was analogous
to streams in New Zealand, which have a similar biogeo-
graphical and evolutionary history to streams in southern
Chile. Like New Zealand streams, collector—gatherers were
the dominant functional feeding group, and consequently
the benthic macroinvertebrate fauna in both the CHBR and
the South Island of New Zealand depended largely on the
standing crop of fine benthic organic matter (Winterbourn
and Ryan 1994), instead of CBOM as in other forested eco-
systems (Wallace et al. 1997). The effects of beavers on the
biomass and productivity of functional groups varied some-
what between the two study streams. While overall collec-
tor—gatherers were dominant at all sites, the clear water
stream (Robalo) had greater scraper FFG biomass and pro-
duction than the tannin-enriched stream (Mejillones). As a
result, secondary production at the downstream site at
Robalo was nearly twice as great as at the Mejillones site,
due to the contribution of scrapers.

To explain the observed functional response of benthic
ecosystems to introduced beaver modifications, we found
that macroinvertebrate biomass was positively related to
total benthic organic matter standing crop, but not to nitro-
gen availability. Increased retention of organic matter in
ponds by beaver activity enhanced this ecosystem function,
indicating that even in these very nutrient-poor systems,
stream macroinvertebrates appeared to be more limited by
carbon than nitrogen availability.

The relationship between biodiversity
and ecosystem function

An underlying assumption when examining the relation-
ships between species diversity and ecosystem functioning
is that the loss of species from ecosystems will result in a
reduction in ecosystem function (Chapin etal. 2000;
Naeem and Wright 2003). While this general concept may
likely hold in many ecosystems, particularly in regard to
taxa such as foundation species (Ellison et al. 2005), our
study showed that reductions in species richness were asso-
ciated with increased ecosystem function (secondary
production). Our findings are illustrative of the type of sce-
nario wherein ecosystem function is determined less by
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individual species traits and more by resource availability
(in this case, a beaver-mediated ecosystem-level trait).

The opposing trends observed for benthic richness (neg-
ative) and production (positive) in relation to organic mat-
ter standing crop in ponds appears to derive from the fact
that their drivers, while originating from the same source,
operated along different pathways (Fig.4); both trends
arose from an increased quantity of organic matter, which
then had two types of impacts. Effects on richness appar-
ently occurred due to a physical/habitat modification path-
way (reductions in benthic substrate heterogeneity
associated with an increased quantity of organic matter),
whereas increased biomass and secondary production of
macroinvertebrates were indicative of a trophic/resource
availability pathway (increased quantity of benthic food
resource availability associated with increased organic mat-
ter retention). Both mechanisms are consistent with predic-
tions regarding the effects of IEEs, whose habitat
modifications can influence novel ecosystems via: (1) nutri-
ent resources, (2) trophic resources, or (3) physical/habitat
resources (Crooks 2002). At the same time, these findings
are inconsistent with predicted positive relationships
between biodiversity and ecosystem function. These results
suggested an overriding importance of habitat and trophic
resources in affecting species richness and ecosystem func-
tion individually, in contrast to species number and compo-
sition being the primary drivers of function.

Conclusion

Previous studies in the Austral Archipelago have addressed
the influence of beaver invasion on riparian vegetation,
showing that beaver impacts on streamside forests create
meadow ecosystems with limited Nothofagus regeneration
and often permit the invasion of exotic herbaceous plants
(Anderson et al. 2006b; Martinez Pastur et al. 2006). Here
we found that introduced beavers impacted both benthic
community and ecosystem properties of the pond habitats
they created, but not at sites immediately below beaver
ponds. These results largely coincided with predictions out-
lined for the effects of IEEs in general (Crooks 2002). The
landscape effects of beavers on the benthic macroinverte-
brate community may be mitigated in the CHBR since nat-
ural lentic habitats exist in these watersheds, which has
major implications for the maintenance of native aquatic
biodiversity in the face of this invasion. Consequently,
questions regarding the management of this invasive exotic
species should include: (1) to what extent and density are
beaver ponds being constructed across the landscape, and
(2) to what degree are beavers dominating these watersheds
rather than creating a patchy mosaic? We furthermore
found that beaver activity enhanced overall energy produc-
tion and retention in subantarctic stream ecosystems.

Therefore, determining the fate of this increased macroin-
vertebrate production and its potential links with riparian
ecosystems will be an important future area of work in
quantifying the role of beavers in the subantarctic land-
scape.
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